Το amplituhedron (τολμώ να το βαφτίσω... πιθανόεδρο!) είναι ένα περίπλοκο, αφηρημένο μαθηματικό αντικείμενο, το οποίο μοιάζει με πολυεδρικό διαμάντι, που όμως κατοικοεδρεύει σε υψηλές διαστάσεις. Στον όγκο του είναι κωδικοποιημένα τα πιο θεμελιώδη χαρακτηριστικά της πραγματικότητας που είμαστε σε θέση να υπολογίσουμε, δηλαδή τα πλάτη σκέδασης, τα οποία αφορούν την πιθανότητα κάποιου συνόλου συγκρουόμενων σωματιδίων να εξελιχθούν σε κάποιο άλλο σύνολο σωματιδίων.
Οι λεπτομέρειες κάθε ιδιαίτερης διαδικασίας σκέδασης υπαγορεύουν το πλήθος των διαστάσεων και τις έδρες του αντίστοιχου πιθανοέδρου. Τα κομμάτια της +ve Grassmannian (βλέπε εξωτερική άλγεβρα) τα οποία συνήθως υπολογίζονται με διαγράμματα twistor του Penrose και ακολούθως προστίθενται απλά με το... "χέρι", δεν είναι παρά οι δομικοί λίθοι που ταιριάζουν μέσα στο πιθανόεδρο, όπως ακριβώς κάποια τρίγωνα ταιριάζουν μέσα σε ένα πολύγωνο 2 διαστάσεων. Σημειωτέον δε, ότι η +ve Grassmannian είναι ο κάπως πιο μεγάλος ξάδερφος του εσωτερικού ενός τριγώνου. Όπως πχ το εσωτερικό ενός τριγώνου είναι μία περιοχή σε χώρο 2 διαστάσεων που οριοθετείται από ευθείες γραμμές που τέμνονται, έτσι και η απλούστερη περίπτωση μιας +ve Grassmannian είναι μια περιοχή σε χώρο Ν διαστάσεων που οριοθετείται από τεμνόμενα επίπεδα. (Ν είναι φυσικά ο αριθμός των σωματιδίων που εμπλέκονται στην διαδικασία σκέδασης!)
Επιπροσθέτως, οι Arkani-Hamed και Trnka κατόρθωσαν, σε κάποιες περιπτώσεις, να υπολογίσουν τον όγκο του πιθανοέδρου απευθείας, δηλ. χωρίς την βοήθεια των προαναφερθέντων διαγραμμάτων twistor, που συνήθως επιστρατεύονται για την εύρεση των επιμέρους όγκων.
Το εκπληκτικό είναι ότι βρήκαν ένα "master πιθανόεδρο" με άπειρο αριθμό εδρών, ανάλογο με έναν κύκλο σε 2 διαστάσεις, που έχει άπειρο αριθμό πλευρών. Ο όγκος του συγκεκριμένου μαθηματικού αντικειμένου θεωρητικά αναπαριστά το συνολικό πλάτος πιθανότητας ΟΛΩΝ των φυσικών διεργασιών! Στις έδρες αυτής της master δομής "ζουν" πιθανόεδρα χαμηλότερων διαστάσεων, τα οποία αντιστοιχούν στις αλληλεπιδράσεις μεταξύ πεπερασμένου αριθμού σωματιδίων!!!
Ακόμα και ΧΩΡΙΣ τις αρχές της μοναδιακότητας και τοπικότητας, ο φορμαλισμός του πιθανοέδρου στη κβαντική θεωρία πεδίου, προς το παρόν δεν περιλαμβάνει την βαρύτητα. Όμως οι ερευνητές δουλεύουν πολύ επάνω σ' αυτό και αναφέρουν ότι πιθανότατα θα περιγραφούν με το πιθανόεδρο ή με κάποιο παρόμοιο γεωμετρικό αντικείμενο KAI οι διαδικασίες σκέδασης που συμπεριλαμβάνουν σωματίδια φορείς της βαρυτικής δύναμης. Αυτό το νέο αφηρημένο αντικείμενο μπορεί να σχετίζεται στενά με το πιθανόεδρο και ίσως είναι ελαφρά διαφορετικό, αλλά ενδεχομένως να είναι και κάπως πιο δύσκολο να προσδιοριστεί.
Επίσης, οι φυσικοί θα πρέπει να αποδείξουν ότι ο νέος γεωμετρικός φορμαλισμός έχει ακριβή εφαρμογή σε ΟΛΑ τα γνωστά σωματίδια που αναφύονται στο σύμπαν, κι' ας "αναδύθηκε" μέσα από την εξιδανικευμένη κβαντική θεωρία πεδίου που χρησιμοποιήθηκε για την ανάπτυξή του, δηλ. μια μεγιστοποιημένη υπερσυμμετρική θεωρία Yang-Mills. Το εν λόγω θεωρητικό μοντέλο, που αποδέχεται έναν υπερσυμμετρικό σύντροφο για κάθε γνωστό σωματίδιο και επίσης διαχειρίζεται το χωροχρoνικό συνεχές ως επίπεδο, συμβαίνει να είναι η απλούστερη περίπτωση γι' αυτά τα νέα μαθηματικά εργαλεία. Όμως το σημαντικό είναι πως έχει γίνει κατανοητός ο τρόπος γενίκευσης αυτών των εργαλείων και στις άλλες θεωρητικές προσεγγίσεις!
Πέρα από την ασύγκριτη ευκολία των υπολογισμών με το πιθανόεδρο σε σύγκριση με τα διαγράμματα Feynman, που τις περισσότερες φορές οδηγούν σε υπολογιστικά αδιέξοδα ακόμη και τους σύγχρονους υπερυπολογιστές, αυτή η ανακάλυψη μπορεί να προξενήσει μια ακόμη βαθύτερη μετατόπιση στην επιστημονική σκέψη. Ο χώρος και ο χρόνος ΔΕΝ είναι πλέον θεμελιώδεις ιδιότητες αλλά αναδυόμενα βασικά συστατικά της φύσης. Κυρίως όμως θα πρέπει να κατανοηθεί το πως η κοσμολογική εξέλιξη, αλλά και το σύμπαν, προήλθαν από την απλή γεωμετρία!!!
Είτε μας αρέσει είτε όχι, το πιθανόεδρο ίσως είναι η σύγχρονη εκδοχή της αναλογίας με τα φασόλια των ιερέων Maya, που περιγράφει ο λατρεμένος Richard Feynman στην εισαγωγή του βιβλίου του QED.
Είτε μας αρέσει είτε όχι, το πιθανόεδρο ίσως είναι η σύγχρονη εκδοχή της αναλογίας με τα φασόλια των ιερέων Maya, που περιγράφει ο λατρεμένος Richard Feynman στην εισαγωγή του βιβλίου του QED.
ΥΓ. Μη διστάσετε να κλικάρετε τα 27 link και τις 2 εικόνες
☮